2020 Resource Report # Barton Village Inc. Electric Department PO Box 519 Barton, VT 05822 Phone (802) 525-4747 #### Submitted to: the Vermont Public Utility Commission and the Vermont Department of Public Service #### Submitted on: January 30, 2021 #### Submitted by: Vermont Public Power Supply Authority on behalf of Barton Village Inc. Electric Department in fulfillment of Vermont Public Utility Commission Rule 5.206(B) # **Overview & Introduction** As a member of the Vermont Public Power Supply Authority (VPPSA), Barton Village Inc. Electric Department ("BVED") relies on VPPSA to plan for and manage its power supply in New England's wholesale markets. In this role, VPPSA not only manages BVED's power supply in the ISO New England's (ISO-NE) wholesale power markets, but also plans for and solicits new power supplies for BVED and its other municipal utility members. The information contained in this report describes BVED's current power supplies, future needs and acquisition strategies over the next five years. It is divided into four sections. ## I. Electricity Demand This section shows how electricity demand has changed over the past five years, and forecasts the demand for the upcoming five years. ## II. Electricity Supply This section describes each resource in BVED's portfolio of supplies, as well as the new resources that have been acquired over the past year. ## III. Electricity Supply & Demand This section illustrates the balance between the supply and demand for energy, capacity, and renewable energy credits. ## IV. Anticipated Transactions & Acquisition Strategy This section lists the resources that are expected to be acquired over the upcoming five-year period, and outlines the strategy for procuring them. # I. Electricity Demand In 2020, BVED's energy requirements¹ ("Load") totaled 16,152,540 kWh, and its coincident annual peak with ISO-NE was 2,630 kW on July 27th at hour ending 18. As shown in Table 1, BVED's energy requirements have fluctuated by about +/- 3% per year while its peak load² has fluctuated more widely. This peak fluctuation is primarily due to BVED's run-of-river, behind-the-meter hydro facility, which is not always operating at its capacity during the coincident peak hour. Table 1: Historical Loads | Year | Load (kWh) | % Change | Peak Load (kW) | % Change | |------|------------|----------|----------------|----------| | 2016 | 15,911,443 | | 2,390 | | | 2017 | 15,517,214 | -2.5% | 1,367 | -42.8% | | 2018 | 15,712,421 | 1.3% | 2,496 | 82.5% | | 2019 | 15,573,781 | -0.9% | 2,543 | 1.9% | | 2020 | 16,152,540 | 3.7% | 2,630 | 3.4% | BVED's energy needs are forecasted annually using a multiple regression model whose inputs include historical loads, weather, and economic variables like employment and income. These forecasts are adjusted for anticipated changes in net metering, heat pump and electric vehicle penetrations. Table 2 shows the results of the most recent 5-year load forecast. Table 2: Forecast Loads | Year | Load (kWh) | % Change | Peak Load (kW) | % Change | |-------|--------------|-----------|----------------|-----------| | I Gai | LOAG (KVVII) | 76 Change | Teak Load (KW) | 76 Change | | 2021 | 15,591,260 | | 2,553 | | | 2022 | 15,631,890 | 0.3% | 2,558 | 0.2% | | 2023 | 15,681,930 | 0.3% | 2,563 | 0.2% | | 2024 | 15,742,600 | 0.4% | 2,568 | 0.2% | | 2025 | 15,819,460 | 0.5% | 2,573 | 0.2% | Assuming normal weather, loads (kWh) are forecast to grow by 0.3-0.5% per year. Peak loads (kW) are expected to increase slightly as well, about 0.2% per year on average. ¹ BVED's energy requirements ("Load") account for behind-the-meter hydro generation, transmission losses, and adjustments for Vermont's Standard Offer Program. Also known as "Total Load - Including Losses", it is not the same as BVED's Real-Time Load Obligation (RTLO) with ISO New England. ² Peak Load is defined as the annual coincident peak with ISO New England and is based on RTLO. # **II.** Electricity Supply BVED's power supply is made up of owned generation, long-term contracts, and short-term contracts. The resources in BVED's portfolio represent a range of fuel types and technologies. In addition, they are located throughout Vermont and New England, and many of their expiration dates have been chosen not to overlap. As a result, they act as a diversified portfolio that effectively hedges BVED's power supply costs against the cost of serving load in ISO New England's energy, capacity and ancillary markets. These power supply resources are summarized in Table 3. Table 3: 2020 Electricity Supply Resources | Table 3: 2020 Electricity Supply Resources | | | | | |--|-------------|--------|--------------|--------------| | Resource | 2020
MWH | % | Fuel | Exp. Date | | Barton Hydro | 5,136 | 28.2% | Hydro | Life of Unit | | Fitchburg Landfill | 2,061 | 11.3% | Landfill Gas | 12/31/31 | | Kruger Hydro | 1,330 | 7.3% | System | 12/31/37 | | Market Contracts | 1,759 | 9.7% | System | Varies | | NYPA Niagara Contract | 2,392 | 13.1% | Hydro | 9/1/25 | | NYPA St. Lawrence Contract | 48 | 0.3% | Hydro | 4/30/32 | | Project #10 | 9 | 0.1% | Oil | Life of Unit | | Ryegate Facility | 426 | 2.3% | Wood | 10/31/21 | | Seabrook 2018-22 Purchase | 4,675 | 25.7% | Nuclear | 12/31/22 | | Standard Offer Program | 314 | 1.7% | Solar | Varies | | VEPPI Program | 56 | 0.3% | Hydro | 10/31/2020 | | TOTAL RESOURCES | 18,206 | 100% | | | | | | | | | | Total Load Including Losses | 16,153 | | | | | ISO Exchange (+ Purchase/- Sale) | -2,054 | -11.3% | | | # **Resource Descriptions** The following bullets summarize the essential characteristics of each resource, and in some cases, include notes that describe unique aspects of the resource. ## 1. Barton Hydro Size: 1.4 MWFuel: Hydro • Location: Charleston, VT • Entitlement: 100% (1.4 MW), Owned • Products: Energy, capacity, renewable energy credits (VT Tier I & MA II) • End Date: Life of Unit ## 2. Fitchburg Landfill Size: 4.5 MW Fuel: Landfill Gas Location: Westminster, MA Entitlement: 5.553%, PPA • Products: Energy, capacity, renewable energy credits (MA Class I) • End Date: 12/31/31 ## 3. Kruger Hydro Size: 6.7 MWFuel: Hydro Location: Maine and Rhode Island Entitlement: 5.7579%, 0.391 MW, PPA • Products: Energy, capacity • End Date: 12/31/37 • Notes: The Electric Department has an agreement with VPPSA to purchase unit contingent energy and capacity from six hydroelectric generators. The contract does not include the environmental attributes and appears as system mix in the summary table. #### 4. Market Contracts Size: Varies • Fuel: New England System Mix Location: New England Entitlement: Varies (PPA) Products: Energy • End Date: Varies, less than 5 years. • Notes: The Electric Department purchases system power from various other entities under short-term (5 year or less) agreements. Page 5 of 17 ## 5. New York Power Authority (NYPA) • Size: 3.044 MW (Niagara), 0.195 MW (St. Lawrence) • Fuel: Hydro • Location: New York State Entitlement: 2.12%, 0.17 MW (Niagara PPA), 0.599%, 0.01 MW (St. Law. PPA) Products: Energy, capacity, renewable energy credits (NY System Mix) • End Date: 9/1/25 (Niagara), 4/30/2032 (St. Lawrence) • Notes: NYPA provides hydro power to the Electric Department under two contracts, which will be extended at the end of their term. ## 6. Project 10 Size: 40 MWFuel: Oil Location: Swanton, VT • Entitlement: 2.16% (0.864 MW), joint-owned through VPPSA • Products: Energy, capacity, reserves • End Date: Life of unit • Notes: As the joint-owner, VPPSA has agreements with the Electric Department pay for and purchase 2.16% of the unit's output. #### 7. Ryegate Size: 20.5 MWFuel: Wood • Location: East Ryegate, VT • Entitlement: 0.2658% (0.0545 MW), PPA • Products: Energy, capacity, renewable energy credits (CT Class I) • End Date: 10/31/2021 #### 8. Seabrook 2018-22 Size: 1,250 MW Fuel: Nuclear Location: Seabrook, NH • Entitlement: 0.646 MW On-Peak, 0.432 MW Off-Peak (PPA) • Products: Energy, capacity, environmental attributes (Carbon-free nuclear) • End Date: 12/31/2022 #### 9. Standard Offer Program • Size: Small renewables, primarily solar < 2.2 MW • Fuel: Mostly solar, but also some wind, biogas and micro-hydro • Location: Vermont • Entitlement: 0.2694% (Statutory) • Products: Energy, capacity, renewable energy credits • End Date: Varies • Notes: The Electric Department is required to purchase power from small power producers through the Vermont Standard Offer Program in 2020, in accordance with PUC Rule #4.300. The entitlement percentage fluctuates slightly each year with the Electric Department's pro rata share of Vermont's retail energy sales. #### 10. VEPPI Program • Size: Small hydro < 80 MW Fuel: HydroLocation: Vermont Entitlement: 0.2495% (Statutory) Products: Energy, capacity End Date: 10/31/2020 • Notes: The Electric Department is required to purchase hydro power from small power producers through Vermont Electric Power Producers, Inc. ("VEPPI"), in accordance with PUC Rule #4.100. The entitlement percentage fluctuates slightly each year with the Electric Department's pro rata share of Vermont's retail energy sales, and does not include the renewable energy credits. # Newly Acquired Resources In December 2020, BVED replaced a portion of the Seabrook 2018-22 resource with a fixed, price, fixed volume energy plus Renewable Energy Credit (REC) contract. This contract will hedge part of BVED's energy and Tier I REC requirements over its term. #### 11. Brookfield 2023-2027 • Size: 8-10 MW On-Peak, 7-8.5 MW Off-Peak Fuel: HydroLocation: MA HUB • Entitlement: 6.25-7% On Peak, 5.7143-7.0588% Off Peak Products: Energy, Tier I RECs Term: 1/1/2023 - 12/31/2027 # III. Resource Supply & Demand Energy, capacity and Renewable Energy Credits (RECs) are the primary products that BVED needs to manage, and the following sections illustrate the forecasted balance between their supply and their demand over the next five to twenty years. # Energy Figure 1 shows the current forecast of energy supply and demand for the next five years. The alignment is seasonal, and fluctuates with the hydrological conditions for Barton Hydro. There are no significant deficits until 2023 and 2024. This is due to the expiration of the Seabrook 2018-22 PPA on 12/31/22 and a market contract on 6/30/24. We anticipate that these deficits will be hedged in 2021 using the Planned Purchase process that is described in the next section. Page 9 of 17 # Capacity Figure 2 shows the capacity supply and demand balance for the next five years. The supply is forecasted to be 50% lower than the demand for the next five years. However, this outcome depends on stream flows at the annual coincident peak hour with ISO New England. If conditions are wetter-than-forecast, then Barton Hydro, which is behind-the-meter, will close the majority of this gap. If the conditions are dry, which is the assumption that is made for this forecast, then BVED's capacity supply deficit will be fulfilled by ISO New England's Forward Capacity Market. In any event, capacity prices are already set to decline from 2021 levels for at least the next two years, and are forecast to stay at these low levels throughout the forecast period. Page 10 of 17 # Renewable Energy Credits Figure 3 and Figure 4 illustrate BVED's need for RECs under Vermont's Renewable Energy Standard (RES). #### Tier I BVED anticipates purchasing 5,000-6,000 MWH/year of Tier I RECs through 2022. In 2023, the Brookfield 2023-2027 PPA comes into effect, and as a result, BVED will only need to purchase about 2,000 MWH/year in 2023 and 2024. By 2025, the supply and demand for Tier I will temporarily come into balance. Thereafter, an increasing deficit position will form as the RES requirements increase. Page 11 of 17 ## Tier II BVED's Tier II deficit is expected to rise from about 150 MWH in 2021 to almost 400 MWH in 2025. As a result, additional Tier II RECs and/or resources will be acquired and/or developed to meet the RES requirements. # IV. Anticipated Transactions & Acquisition Strategy VPPSA anticipates that BVED may enter into one or more of the transactions that are listed in Table 4. Table 4: Anticipated Hedging Transactions | rable 4. Anticipated Heaging Transactions | | | | | | | |---|---------------------|----------------|-------------------------|----------------------------|----------------------------|--| | Product | Action | Term | Quantity | Anticipated
Price Range | Transaction
Anticipated | | | 7x24
Energy | Purchase
or Sale | 1 month | 0-1.0 MW | \$25-\$75
/MWH | Monthly /
Seasonally | | | On / Off Peak
Energy | Purchase | 1-60
months | 0-1.0 MW | \$25-\$75
/MWH | Spring 2021 | | | Long-Term
Bundled PPAs | Purchase | 5+ years | 0-1.0 MW | \$25-\$75
/MWH | None
anticipated. | | | Capacity | Purchase | 5+ years | 0 MW | \$2-\$5
/kW-month | None
anticipated. | | | VT Tier I
RECs | Purchase | 1-5 years | 2,000-5,000
MWH/Year | \$0.10 - \$1.50
/MWH | May / June
2021 | | | VT Tier II
RECs | Purchase
or Sale | 1-5 years | 100-400
MWH/Year | \$10 - \$40
/MWH | May / June
2021 | | # **Energy Acquisition Strategy** ## 7x24 Energy VPPSA's Power Supply Authorities Policy requires that energy supplies be within +/-5% of the forecasted demand in each month of the year. This is known as the hedge ratio, and it is simply the ratio of the forecasted supply to the forecasted demand. Any imbalances between supply and demand are hedged to these levels before the operating month begins. In practice, changes in weather, generator availability and forecast error sometimes combine to push the actual percentage outside of the +/-5% threshold. At least seasonally (four times a year), VPPSA uses a 7x24 energy product to refine the energy hedge ratio for BVED. The following three-step process is used to balance supply and demand on a monthly basis within the current budget (calendar) year. ## 1. Update Budget Forecast a. The budgeted volumes (MWH) are updated to reflect known changes to demand and supply including unit availability, fuel supply, and hydrological conditions. ## 2. Hydroelectric Adjustment a. Supply is reduced by one standard deviation from the long-term average in order to avoid making sales that could end up being unhedged by supply in the event of a dryer-than-normal month. #### 3. Execute Purchases or Sales - a. Internal Transactions: VPPSA seeks first to make internal transactions between its members to balance supply and demand. The transactions are designed to result in a hedge ratio that falls within the +/-5% range that is required by VPPSA's Power Supply Authorities Policy. - b. **External Transactions**: In the event that internal transactions cannot bring BVED into the +/-5% range, external transactions are placed with power marketers, either directly or through a broker. - c. Price: For Internal Transactions, the price of the transaction is set by an average of the bid-ask spread as reported by brokers on the date of the transaction. For External Transactions, the price is set through a negotiation with the counterparty. ## On / Off Peak Energy Known within VPPSA as "planned purchases", these transactions are almost always purchases. They typically take place no more than once a year, usually carry a 1-5 year term, and if possible, are executed at a time when market prices are at or below budgeted levels. These purchases are designed to fit the on and off-peak energy needs in each month of the year as precisely as possible. As a result, they minimize the need for monthly 7x24 hedging transactions under VPPSA's Power Supply Authorities Policy. The solicitation method is an informal Request for Proposals (RFP), and follows a three-step process. - 1. **Pre-Approval Term Sheet:** First, the proposed purchase volumes and anticipated prices are documented in a standardized term sheet. This document is distributed to each VPPSA member for their pre-approval, and it defines their share of the total purchase. - 2. **Issue RFP:** Once all of the pre-approvals are received, the term sheet is distributed to three or more power marketers, who are asked to make their best offer by a deadline, typically within 5 business days. - 3. Evaluate & Execute: When all of the bids are received, VPPSA evaluates them to determine the lowest cost bid, and executes the purchase with that counterparty. Then the purchase is allocated to each VPPSA member according to their pre-approved term sheet, and the data is entered into VPPSA's database for scheduling, delivery and invoice tracking. # Long-Term Bundled PPAs VPPSA evaluates long-term Purchased Power Agreements (PPAs) for bundled energy, capacity, renewable energy credits, and/or ancillary products on an ongoing basis. Recently, BVED has evaluated a solar PPA in partnership with Encore Renewables, and this year, BVED anticipates that it may evaluate 1.) a contract extension with NextEra as the current Seabrook PPA expires at the end of 2022, and 2.) a hydro PPA that includes energy, capacity, and Tier I RECs. Because long-term PPAs are subject to PUC approval, the acquisition strategy is simply to negotiate the best terms and to make contract execution contingent on PUC approval. # Capacity Acquisition Strategy Capacity is seldom acquired as a stand-alone product, and because market prices are fixed by the Forward Capacity Market three years in advance of the operating year, there is little opportunity to make short-term (< 5 year) capacity purchases. However, there is short-term opportunity on the demand side. For example, VPPSA forecasts monthly and annual coincident peak loads, and communicates the forecast of the peak day and hour to its members. As a result, all available demand-side actions are taken to reduce capacity requirements. This presently includes maximizing behind-the-meter generation such as load-reducing hydro, and demand response using VPPSA's contract with Virtual Peaker³. For long-term (>5 years) capacity purchases, the acquisition strategy is to bundle capacity into negotiations for long-term, bundled PPAs as mentioned in the previous section. # **REC Acquisition Strategy** VPPSA acquires RECs on behalf BVED and its other members during the quarterly trading periods that are defined in the NEPOOL Generator Information System (GIS)⁴. The acquisition strategy has three parts. - 1. First, VPPSA completes an analysis of Tier I and Tier II requirements at the beginning of each quarter's trading period. Because REC banking is limited to three years, the analysis never calls for purchasing more RECs than can be used during that time frame. - 2. Second, broker quotes are compared to historical prices and budgeted REC prices to decide when to purchase RECs. - 3. In the event that no purchase opportunities arise during the first three trading periods, then VPPSA acquires the required RECs are prevailing market prices during the fourth quarter's trading period. ³ More information on Virtual Peaker can be found on their website at https://www.virtual-peaker.com/. ⁴ https://www.nepoolgis.com/ # Generation and Transmission Facility Transactions #### Generation VPPSA continues to work with Encore Renewables to develop Tier II qualifying solar projects within its members service territories. Because BVED expects to have a deficit of Tier II RECs for the coming five years, BVED may choose to develop and/or participate in a solar project in the coming year(s). #### Transmission BVED does not anticipate any transmission facility transactions in the coming year. # **Waiver Request** In accordance with Rule 5.204, BVED requests a waiver of the notification for short-term transactions that will be subject to after-the-fact reporting, pursuant to Rule 5.206(A). These transactions could be up to five years in nature and are designed to either hedge BVED's short-term exposure or maximize short-term value of existing resources. BVED anticipates seeking individual waivers of any longer-term purchases as otherwise required by Rule 5.200, if necessary.