2020 Resource Report # Town of Hardwick Electric Department PO Box 516 Hardwick, VT 05843 Phone (802) 472-5201 Fax (802) 472-6769 #### Submitted to: the Vermont Public Utility Commission and the Vermont Department of Public Service #### **Submitted on:** January 30, 2021 #### **Submitted by:** Vermont Public Power Supply Authority on behalf of the Town of Hardwick Electric Department in fulfillment of Vermont Public Utility Commission Rule 5.206(B) # **Overview & Introduction** As a member of the Vermont Public Power Supply Authority (VPPSA), the Town of Hardwick Electric Department ("HED") relies on VPPSA to plan for and manage its power supply in New England's wholesale markets. In this role, VPPSA not only manages Hardwick's power supply in the ISO New England's (ISO-NE) wholesale power markets, but also plans for and solicits new power supplies for Hardwick and its other municipal utility members. The information contained in this report describes Hardwick's power supply needs and acquisition strategy over the next five years. It is divided into four sections. ## I. Electricity Demand This section shows how electricity demand has changed over the past five years, and forecasts the demand for the upcoming five years. #### II. Electricity Supply This section describes each resource in BVED's portfolio of supplies, as well as the new resources that have been acquired over the past year. ## III. Electricity Supply & Demand This section illustrates the balance between the supply and demand for energy, capacity, and renewable energy credits. #### IV. Anticipated Transactions & Acquisition Strategy This section lists the resources that are expected to be acquired over the upcoming five-year period, and outlines the strategy for procuring them. # I. Electricity Demand In 2020, Hardwick's energy requirements¹ ("Load") totaled 37,608,137 kWh, and its coincident annual peak with ISO-NE was 6,071 kW on July 27th at hour ending 18. As shown in Table 1, Hardwick's energy requirements have fluctuated by about +/- 1% per year while its peak load² has fluctuated by up to 30%. This peak fluctuation is primarily due to Hardwick's run-of-river, behind-the-meter hydro resource, which is not always operating at its capacity during the coincident peak hour. Table 1: Historical Loads | Year | Load (kWh) | % Change | Peak Load (kW) | % Change | |------|------------|----------|----------------|----------| | 2016 | 37,960,108 | -0.4% | 5,892 | 6.3% | | 2017 | 37,841,069 | -0.3% | 4,714 | -20.0% | | 2018 | 37,805,985 | -0.1% | 4,433 | -6.0% | | 2019 | 37,447,477 | -0.9% | 4,646 | 4.8% | | 2020 | 37,608,137 | 0.4% | 6,071 | 30.7% | Hardwick's peak and energy needs are forecasted annually using a multiple regression model whose inputs include historical loads, weather, and economic variables like employment and income. These forecasts are adjusted for anticipated changes in net metering, heat pump and electric vehicle penetrations. Table 2 shows the results of the most recent 5-year load forecast. Table 2: Forecast Loads | Year | Load (kWh) | % Change | Peak Load (kW) | % Change | |------|------------|----------|----------------|----------| | 2021 | 37,246,600 | | 5,151 | | | 2022 | 37,606,890 | 1.0% | 5,182 | 0.6% | | 2023 | 37,986,290 | 1.0% | 5,213 | 0.6% | | 2024 | 38,391,510 | 1.1% | 5,245 | 0.6% | | 2025 | 38,834,300 | 1.2% | 5,276 | 0.6% | Assuming normal weather, loads (kWh) are forecast to increase by about 1% per year on average. This is due to a series of new customers that are expected to connect to the system. Peak loads (kW) are expected to increase as well, by about 0.6% per year. ¹Hardwick's energy requirements ("Load") include behind-the-meter hydro generation, transmission losses, and adjustments for Vermont's Standard Offer Program. Also known as "Total Load - Including Losses, it is not the same as Hardwick's Real-Time Load Obligation (RTLO) with ISO New England. ² Peak Load is defined as the annual coincident peak with ISO New England and is based on RTLO. # **II.** Electricity Supply Hardwick's power supply is made up of owned generation, long-term contracts, and short-term contracts. The resources in Hardwick's portfolio represent a range of fuel types and technologies. In addition, they are located throughout Vermont and New England, and many of their expiration dates have been chosen not to overlap. As a result, they act as a diversified portfolio that effectively hedges Hardwick's power supply costs against the cost of serving load in ISO New England's energy, capacity and ancillary markets. These power supply resources are summarized in Table 3. Table 3: 2020 Electricity Supply Resources | Resource | 2020
MWH | % | Fuel | Exp. Date | |----------------------------|-------------|--------|--------------|--------------| | Chester Solar | 1,061 | 2.8% | System | 6/30/39 | | Fitchburg Landfill | 4,176 | 11.0% | Landfill Gas | 12/31/31 | | Market Contracts | 5,907 | 15.5% | System | Varies | | McNeil Facility | 3,386 | 8.9% | Wood | Life of Unit | | NYPA Niagara Contract | 4,707 | 12.4% | Hydro | 9/1/25 | | NYPA St. Lawrence Contract | 104 | 0.3% | Hydro | 4/30/32 | | Project #10 | 42 | 0.1% | Oil | Life of Unit | | Ryegate Facility | 1,050 | 2.8% | Wood | 10/31/21 | | Seabrook 2018-22 Purchase | 13,282 | 34.9% | Nuclear | 12/31/22 | | Standard Offer Program | 774 | 2.0% | Solar | Varies | | Stony Brook Station | 502 | 1.3% | Oil | Life of Unit | | VEPPI Program | 139 | 0.4% | Hydro | 10/31/20 | | Wolcott Hydro | 2,900 | 7.6% | Hydro | Life of Unit | | TOTAL RESOURCES | 38,031 | 100.0% | | | | Total Load Including Losses | 37,608 | | | |----------------------------------|--------|-------|--| | ISO Exchange (+ Purchase/- Sale) | -422 | -1.1% | | # **Resource Descriptions** The following bullets summarize the essential characteristics of each resource, and in some cases, include notes that describe unique aspects of the resource. #### 1. Chester Solar Size: 4.8 MWFuel: Solar Location: Chester, MA Entitlement: 15.1% (0.725 MW), PPA Products: Energy, capacity • End Date: 6/30/39 Notes: The contract does not include the environmental attributes and appears as system mix in the summary table. # 2. Fitchburg Landfill Size: 4.5 MW Fuel: Landfill Gas Location: Westminster, MA Entitlement: 11.25% (0.506 MW), PPA Products: Energy, capacity, renewable energy credits (MAI) • End Date: 12/31/31 #### 3. Market Contracts • Size: Varies • Fuel: New England System Mix Location: New EnglandEntitlement: Varies (PPA) Products: Energy, renewable energy credits • End Date: Varies, less than 5 years. • Notes: In addition to the above resources, the Electric Department purchases system power from various other entities under shortterm (5 year or less) agreements. These contracts are described as Planned and Market Purchases in the tables below. #### 4. McNeil Size: 54 MWFuel: Wood • Location: Burlington, Vermont Entitlement: 1.474% (0.796 MW), joint-owned through VPPSA Products: Energy, capacity, renewable energy credits (CT Class I) End Date: Life of Unit Notes: As the joint-owner, VPPSA has agreements with the Electric Department to pay for and purchase 1.474% of the unit's output. #### 5. New York Power Authority (NYPA) • Size: 2,675 MW (Niagara), 1,957 MW (St. Lawrence) • Fuel: Hydro • Location: New York State Entitlement: 0.335 MW (Niagara PPA), 0.022 MW (St. Lawrence PPA) Products: Energy, capacity, renewable energy credits (NY System Mix) • End Date: 9/1/25 (Niagara), 4/30/32 (St. Lawrence) Notes: NYPA provides hydro power to the Electric Department under two contracts, which will be extended at the end of their term. #### 6. Project 10 Size: 40 MWFuel: Oil • Location: Swanton, VT Entitlement: 9.7% (3.88 MW) MW, joint-owned through VPPSA • Products: Energy, capacity, reserves • End Date: Life of unit • Notes: As the joint-owner, VPPSA has agreements with the Electric Department pay for and purchase 9.7% of the unit's output. #### 7. PUC Rule 4.100 (VEPPI Program) • Size: Small hydro < 80 MW Fuel: HydroLocation: Vermont Entitlement: 0.608% (Statutory) Products: Energy, capacity End Date: 10/31/2020 Notes: The Electric Department is required to purchase hydro power from small power producers through Vermont Electric Power Producers, Inc. ("VEPPI"), in accordance with PUC Rule #4.100. The entitlement percentage fluctuates slightly each year with the Electric Department's pro rata share of Vermont's retail energy sales, and does not include the renewable energy credits. # 9. PUC Rule 4.300 (Standard Offer Program) • Size: Small renewables, primarily solar < 2.2 MW • Fuel: Mostly solar, but also some wind, biogas and micro-hydro • Location: Vermont • Entitlement: 0.656% (Statutory) Products: Energy, capacity, renewable energy credits End Date: Varies • Notes: HED is required to purchase power from small power producers through the Vermont Standard Offer Program in 2019, in accordance with PUC Rule #4.300. The entitlement percentage fluctuates slightly each year with the Electric Department's pro rata share of Vermont's retail energy sales. #### 10.Ryegate Size: 20.5 MWFuel: Wood Location: East Ryegate, VTEntitlement: 0.647% (PPA) • Products: Energy, capacity, renewable energy credits (CT Class I) • End Date: 10/31/2021 # 11.Seabrook 2018-22 Size: 1,250 MWFuel: Nuclear Location: East Ryegate, VT • Entitlement: 1.853 MW On-Peak, 1.212 MW Off-Peak (PPA) • Products: Energy, capacity, environmental attributes (Carbon-free nuclear) • End Date: 12/31/2022 #### 12. Stony Brook Station • Size: 352 MW Fuel: Natural Gas, Oil Location: Ludlow, MA Entitlement: 0.528% (PPA) Products: Energy, capacity, reserves • End Date: Life of unit # 13.Wolcott Hydro Size: 0.815 MW Fuel: Hydro Location: Wolcott, VT Entitlement: 100%, Owned Products: Energy, capacity, environmental attributes (VT I) • End Date: Life of Unit # **Newly Acquired Resources** HED has acquired two new resources this past year. The first new resource is the 1.62 MW Billings Road Solar PPA (also known as "H11"). This resource will act as a load reducer with ISO-New England (ISO-NE), and will reduce HED's energy requirements in ISO-NE's energy market. It will also supply Tier II Renewable Energy Credits (RECs). The second new resource is the Brookfield 2023-2027 PPA. In December 2020, HED replaced a portion of the Seabrook 2018-22 resource with a fixed-price, fixed-volume energy plus Renewable Energy Credit (REC) contract. This contract will hedge part of HED's energy and Tier I REC requirements over its term. #### 14. Billings Road Solar PPA Size: 1.62 MWFuel: Solar • Location: Billings Road, Hardwick, VT • Entitlement: 100% • Products: Energy, Tier II RECs • Term: 25 Years #### 15. Brookfield 2023-2027 PPA • Size: 8-10 MW On-Peak, 7-8.5 MW Off-Peak Fuel: HydroLocation: MA HUB • Entitlement: 12.5-15% On Peak, 14.3-17.6% Off Peak Products: Energy, Tier I RECs Term: 1/1/2023 - 12/31/2027 # III. Resource Supply & Demand Energy, capacity and Renewable Energy Credits (RECs) are the primary products that HED needs to manage, and the following sections illustrate the forecasted balance between their supply and their demand over the next five to ten years. # Energy Figure 1 shows the current forecast of energy supply and demand for the next five years. The alignment is good for the next two years but does show a surplus energy in the summer months. This is due to the addition of the Billings Road Solar PPA. The first significant deficit appears in January 2023, and it is due to the expiration of the Seabrook 2018-22 PPA on 12/31/22. We anticipate that this deficit will be hedged with an On / Off Peak Energy purchase as described in the following section. # Capacity Figure 2 shows the capacity supply and demand balance for the next five years. In 2021 and 2022, there is expected to be a small deficit, which will turn into a surplus in the following years. These surpluses will be liquidated in ISO New England's Forward Capacity Market. # Renewable Energy Credits Figure 3 and Figure 4 illustrate HED's need for RECs under Vermont's Renewable Energy Standard (RES). #### Tier I HED anticipates purchasing about 12,000 MWH/year of Tier I RECs through 2022. In 2023 and 2024, the Brookfield 2023-2027 PPA reduces the deficit to about 4,000 MWH/year. In 2025, the supply and demand will be temporarily in balance. Starting in 2026, an increasing deficit forms as the RES requirements increase. Page 11 of 17 # Tier II HED anticipates a surplus of Tier II RECs through 2032. This is the due a high level of uptake in the net metering program and the addition of the Billings Road Solar project. Surplus RECs may be allocated to HED's Tier III requirements and/or sold to reduce HED's cost of service. # IV. Anticipated Transactions & Acquisition Strategy VPPSA anticipates that HED may enter into one or more of the transactions that are listed in Table 4. Table 4: Anticipated Hedging Transactions | Tuble 4. Anticipated Heaging Transactions | | | | | | | |---|---------------------|----------------|-------------------------|----------------------------|----------------------------|--| | Product | Action | Term | Quantity | Anticipated
Price Range | Transaction
Anticipated | | | 7x24
Energy | Purchase
or Sale | 1 month | 0-1.0 MW | \$25-\$75
/MWH | Monthly /
Seasonally | | | On / Off Peak
Energy | Purchase | 1-60
months | 0-1.0 MW | \$25-\$75
/MWH | Spring 2021 | | | Long-Term
Bundled PPAs | Purchase | 5+ years | 0-1.0 MW | \$25-\$75
/MWH | None
anticipated. | | | Capacity | Sale | 5+ years | 0 MW | \$2-\$5
/kW-month | None
anticipated. | | | VT Tier I
RECs | Purchase | 1-5 years | 12,000
MWH/Year | \$0.10 - \$1.50
/MWH | May / June
2021 | | | VT Tier II
RECs | Sale | 1-5 years | 1,000-4,000
MWH/Year | \$10 - \$40
/MWH | May / June
2021 | | # **Energy Acquisition Strategy** ## 7x24 Energy VPPSA's Power Supply Authorities Policy requires that energy supplies be within +/-5% of the forecasted demand in each month of the year. This is known as the hedge ratio, and it is simply the ratio of the forecasted supply to the forecasted demand. Any imbalances between supply and demand are hedged to these levels before the operating month begins. In practice, changes in weather, generator availability and forecast error sometimes combine to push the actual percentage outside of the +/-5% threshold. At least seasonally (four times a year), VPPSA uses a 7x24 energy product to refine the energy hedge ratio for HED. The following three-step process is used to balance supply and demand on a monthly basis within the current budget (calendar) year. #### 1. Update Budget Forecast a. The budgeted volumes (MWH) are updated to reflect known changes to demand and supply including unit availability, fuel supply, and hydrological conditions. #### 2. Hydroelectric Adjustment a. Supply is reduced by one standard deviation from the long-term average in order to avoid making sales that could end up being unhedged by supply in the event of a dryer-than-normal month. #### 3. Execute Purchases or Sales - a. **Internal Transactions**: VPPSA seeks first to make internal transactions between its members to balance supply and demand. The transactions are designed to result in a hedge ratio that falls within the +/-5% range that is required by VPPSA's Power Supply Authorities Policy. - b. **External Transactions**: In the event that internal transactions cannot bring HED into the +/-5% range, external transactions are placed with power marketers, either directly or through a broker. - c. Price: For Internal Transactions, the price of the transaction is set by an average of the bid-ask spread as reported by brokers on the date of the transaction. For External Transactions, the price is set through a negotiation with the counterparty. ## On / Off Peak Energy Known within VPPSA as "planned purchases", these transactions are almost always purchases. They typically take place no more than once a year, usually carry a 1-5 year term, and if possible, are executed at a time when market prices are at or below budgeted levels. These purchases are designed to fit the on and off-peak energy needs in each month of the year as precisely as possible. As a result, they minimize the need for monthly 7x24 hedging transactions under VPPSA's Power Supply Authorities Policy. The solicitation method is an informal Request for Proposals (RFP), and follows a three-step process. - 1. **Pre-Approval Term Sheet:** First, the proposed purchase volumes and anticipated prices are documented in a standardized term sheet. This document is distributed to each VPPSA member for their pre-approval, and it defines their share of the total purchase. - 2. **Issue RFP:** Once all of the pre-approvals are received, the term sheet is distributed to three or more power marketers, who are asked to make their best offer by a deadline, typically within 5 business days. - 3. **Evaluate & Execute:** When all of the bids are received, VPPSA evaluates them to determine the lowest cost bid, and executes the purchase with that counterparty. Then the purchase is allocated to each VPPSA member according to their pre-approved term sheet, and the data is entered into VPPSA's database for scheduling, delivery and invoice tracking. # Long-Term Bundled PPAs VPPSA evaluates long-term Purchased Power Agreements (PPAs) for bundled energy, capacity, renewable energy credits, and/or ancillary products on an ongoing basis. Recently, HED has evaluated a solar PPA in partnership with Encore Renewables, and this year, HED anticipates that it may evaluate 1.) a contract extension with NextEra as the current Seabrook PPA expires at the end of 2022, and 2.) a hydro PPA that includes energy, capacity, and Tier I RECs. Because long-term PPAs are subject to PUC approval, the acquisition strategy is simply to negotiate the best terms and to make contract execution contingent on PUC approval. # Capacity Acquisition Strategy Capacity is seldom acquired as a stand-alone product, and because market prices are fixed by the Forward Capacity Market three years in advance of the operating year, there is little opportunity to make short-term (< 5 year) capacity purchases. However, there is short-term opportunity on the demand side. For example, VPPSA forecasts monthly and annual coincident peak loads, and communicates the forecast of the peak day and hour to its members. As a result, all available demand-side actions are taken to reduce capacity requirements. This presently includes maximizing behind-the-meter generation such as load-reducing hydro, and demand response using VPPSA's contract with Virtual Peaker³. For long-term (>5 years) capacity purchases, the acquisition strategy is to bundle capacity into negotiations for long-term, bundled PPAs as mentioned in the previous section. # **REC Acquisition Strategy** VPPSA acquires RECs on behalf of HED and its other members during the quarterly trading periods that are defined in the NEPOOL Generator Information System (GIS)⁴. The acquisition strategy has three parts. - 1. First, VPPSA completes an analysis of Tier I and Tier II requirements at the beginning of each quarter's trading period. Because REC banking is limited to three years, the analysis never calls for purchasing more RECs than can be used during that time frame. - 2. Second, broker quotes are compared to historical prices and budgeted REC prices to decide when to purchase RECs. - 3. In the event that no purchase opportunities arise during the first three trading periods, then VPPSA acquires the required RECs are prevailing market prices during the fourth quarter's trading period. ³ More information on Virtual Peaker can be found on their website at https://www.virtual-peaker.com/. ⁴ https://www.nepoolgis.com/ # Generation and Transmission Facility Transactions #### Generation VPPSA continues to work with Encore Renewables to develop Tier II qualifying solar projects within its members service territories. Although HED expects to have a surplus of Tier II RECs for the coming five years, VPPSA is monitoring legislative changes that could double the Tier II requirements. In this event, HED may seek to participate in another solar project through VPPSA and Encore Renewables. #### Transmission VPPSA is currently working on a lease of HED's Phase I transmission rights. The terms of the lease have been under negotiation for much of 2020, and are expected to be completed in 2021. # Waiver Request In accordance with Rule 5.204, HED requests a waiver of the notification for short-term transactions that will be subject to after-the-fact reporting, pursuant to Rule 5.206(A). These transactions could be up to five years in nature and are designed to either hedge HED's short-term exposure or maximize short-term value of existing resources. HED anticipates seeking individual waivers of any longer-term purchases as otherwise required by Rule 5.200, if necessary.